UNDERFLOOR HEATING WITH THERMALLY CONDUCTIVE SCREEDS

SOLUTION GUIDE
CONTENTS

Introduction 8
Reference project 9
Technical description 11
System performance 15
On-site implementation 25
Environmental performance 27
Our sustainability strategy 33
Related information 35
Thermal Comfort
Describes a person’s state of mind in terms of whether they feel too hot, too cold or just right\(^1\).

Hydronic Underfloor Heating
A heat transfer system based upon a network of pipes which utilises water as the medium for heat transfer.

Radiant Heat Transfer
The transfer of heat, via to infra-red radiation, from a warm object to that which is of a lower temperature with a direct line of sight\(^2\).

Convective Heat Transfer
Heat transfer which occurs within gasses and liquids, as it is warmed it rises, falling as it cools to create a convection current\(^3\).

Conductive Heat Transfer
The transfer of heat from a warm object to a cool object which is in direct contact\(^3\).

Thermal Conductivity (\(\lambda\)) (W/mK)
The measure of heat flow through a specific material which is independent of thickness (the greater its \(\lambda\) the greater its conductivity)\(^4\).

Thermal Transfer Coefficient (U) & Thermal Resistance (R)
U (W/Km\(^2\)) and R (m\(^2\)K/W) values represent the insulating properties of construction materials. The U value is the reciprocal of the combined R values of a building element based upon its constituent components. U values describe the rate of heat loss through a unit area of an element, the lower a U value the lower the heat loss. R values describe the level of resistance to heat transfer within a specific component, where R increases so does resistance and insulating properties\(^5\).

Expanded Polystyrene (EPS)
A rigid cellular plastic, which can be formed into a multitude of shapes for a range of applications. It is formed through the expansion of gases within polystyrene beads and used as insulation due to its low thermal conductivity (U value)\(^6\).

Extruded Polystyrene (XPS)
A closed celled plastic formed through a continuous extrusion process of melted polystyrene injected with a blowing agent. On exiting through the extruder die the change in pressure results in the expansion of the material to form an insulating board\(^7\).

Coefficient of Performance (COP)
A ratio used to measure the effectiveness of conversion of input energy to useful output energy. Heat pumps can achieve a COP of 4, where 1 unit of input energy (typically electrical) can be converted to 4 units of heating or cooling energy\(^8\).
Our approach to construction encompasses innovative sustainable products, efficient building systems and practical solutions. We recognise the important role we have in promoting sustainable construction by optimising our products, their use and whole life performance. This document is one of a suite that identifies specific construction solutions that can help deliver a sustainable built environment. They explore the details of each system, its performance benefits, how it can be implemented in a project and then compares its environmental performance against alternative solutions.

This document introduces underfloor heating with thermally conductive screeds, which contribute to the construction of buildings that are responsive, efficient, long lasting and robust.

Typical Applications

Any internal floor
Underfloor heating systems offer improvements in energy efficiency and the thermal comfort of users when employed as a replacement for conventional heating systems.

There are two distinct systems for underfloor heating, either electric based or hydronic based. A hydronic system consists of a network of pipes containing water and antifreeze. This system unlike an electric solution can be used for both heating and cooling operations.

An underfloor system with a high thermally conductive self-compacting anhydrite screed provides improvements over conventional screed or slab construction systems. Increased thermal conductivity reduces reaction time and the flowing nature of a self-compacting screed results in an improved pipe coating, enhancing the pipe/screed interface, which combined with guaranteed homogeneity can further improve thermal energy transfer. The inherent strength, durability and low shrink characteristics of anhydrite screeds enables depths to be reduced without compromising performance.
Location: Cambridge
Client: Berkeley Homes
Sub-contractor: Screed and Stone
Year: 2012
Development: Mixed apartments and townhouses
CAMBRIDGE RIVERSIDE

Set on the banks of the River Cam the Berkley Homes development is comprised of a mix of residential offerings from studio to three bedroom apartments along with several townhouses.

Berkeley Homes engaged and challenged their screed contractors, Screed and Stone, along with Lafarge Tarmac, to optimise and enhance the underfloor heating and screed system. The proposed, and implemented, system utilised Topflow Screed A, resulting in a thinner screed layer, bringing the pipe network closer to the surface, minimising response time, and the ability to increase insulation thickness minimising losses.

Thermal performance improvements were all achieved within the depth of a traditional sand cement screed. The flowing and self-compacting nature of Topflow Screed A, combined with its reduction in depth to 50mm (compared to a traditional sand cement screed), enabled significant gains to be made in placement time. The largest floors consisted of a screeded area of approximately 1,000m², with Topflow Screed A it was possible to complete this within one working day, where sand cement screeds are limited to around 100-150m²/day.

The adoption of this solution enabled the main contractor’s strict time constraints to be adhered to, with each floor completed within a week period. Two days were required for preparation, placement of insulation and slip membrane, two days for laying out the underfloor conduit and a single day for screed placement. A material saving of 25m³ was made on the largest floors (1,000m²) due to the depth reduction and the delivery of the material in its fresh state minimised site processes and storage demands associated with traditional sand cement screeds.
An underfloor heating system is comprised of a network of pipes laid and installed within the floor structure of a building9.

In a hydronic system a network of pipes conveys hot water from the heat source, in a closed loop throughout a building where the water is cooled via heat exchange with the screed.

As the screed is heated it discharges this energy to the room primarily through radiation, but also through convection and conduction. The returned water is then reheated to operating temperature and re-circulated through the system9.
Topflow Screed A

Membrane

Underfloor heating pipes

Thermal insulation
The layout of the pipe network is dependent on room design and external openings with a requirement to balance out heat losses at external openings by increasing pipe density10.

Thermal comfort is maintained through radiated heat transfer and the system, when compared to radiators can operate at a significantly reduced temperature when compared to radiators (21 - 25°C from 80°C10,11).

For an underfloor heating system to match the thermal comfort provided by radiators maintaining a room temperature of 22°C the underfloor heating system is only required to heat the room to 20°C. This reduction in temperature is a result of the location of the heat source (floor compared to wall) and a change in heat transfer methods (underfloor systems emitting more energy via radiant heat transfer).

Reducing operating temperatures reduces the demand on heat sources and increases the opportunities to implement alternative heat sources; air or ground source heat pumps, solar thermal or biomass, offering high efficiencies and further reducing external energy demands12.

Hydronic systems, dependent of the heat source, can also be utilised for cooling in periods of high temperatures13.
TOPFLOW SCREED A

Topflow Screed A is a self-compacting screed which is based around the application of a synthetic calcium sulphate binder, in lieu of cement, special additives and selected aggregates.

It displays zero curling and offers minimal shrinkage, providing the capacity to place slabs up to 1,000m² without joints or up to 300m² over underfloor heating without joints.

The inherent strength of the product (compressive and flexural strength of 25 N/mm² and 4 N/mm² respectively) enables thinner screeds to be placed.

It is also well suited to heating systems in light of its relatively high thermal conductivity (2.2 W/mK), which is twice that achieved with traditional sand and cement screeds.

A further advance is Topflow Screed A Thermio which offers an even greater thermal conductivity of 2.5 W/mK.
ENERGY EFFICIENT

Underfloor heating systems offer the ability to reduce energy demands and improve heat supply efficiencies, whilst utilising renewable and more sustainable heat sources12. Equivalent levels of thermal comfort can be achieved at lower operating temperatures when compared to radiator systems10,11.\footnote{12}
COMBUSTION BOILERS
The reduction in the heating demand of underfloor heating systems and their ability to utilise low temperature heat sources does not preclude the use of conventional, combination and condensing, boilers. Biomass boilers can be used as direct replacements for gas boilers, burning natural wood, chips or pellets. Wood burning is considered low carbon, as it is only the carbon absorbed during its life and through transport and handling which is released however it is only sustainable as long as replacements are grown in place of those used14.

HEAT PUMPS
The low operating temperatures of underfloor heating systems are fundamental drivers for the ability to utilise heat pumps as heat sources15,16. Output temperatures range between 30-45°C which are ideal for underfloor heating, and where they perform most efficiently delivering a COP of around 3. The high COP enables energy savings to be made as the energy output is greater than the energy cost to run the system, as heat energy is drawn from the operating environment17.

SOLAR THERMAL
It is not recommended that solar thermal heat sources are used as a sole heat source for underfloor heating systems. Whilst they are capable to support a small scale underfloor heating system, they are most effective if combined with complementary heat sources to mitigate any output drops20.

Boilers and heat pumps can form part of a compatible system which utilises a solar heat store as the interface20.

A solar thermal system can be used as a preheater, reducing energy demands for the underfloor heating whilst satisfying a larger percentage of hot water needs21.
HOMOGENEITY

A self-compacting screed can improve the homogeneity of a flooring solution due to its flowing nature and its ability to obtain full compaction without the need for any external energy input. Where full compaction is achieved this will facilitate the complete envelopment of underfloor heating pipes, improving heat energy transmission, complimenting thermal conductivity and the systems ability to respond to occupants’ requirements.

The homogeneity of sand cement screeds are dependent on the skill level and physical strength of the operative carrying out the compaction operation. It is inherently difficult to determine the level and quality of compaction when carried out through manual methods, which if not complete can have a detrimental effect on system performance. Any pockets of entrapped air will act as insulators slowing heat transfer due to its reduced thermal conductivity when compared to screed (air conductivity is 0.024 W/mK compared to 2.2 W/mK for Topflow Screed A and 2.5 W/mK for Topflow Screed A Thermio).

IMPROVED REACTION TIME

The use of an anhydrite screed in place of a traditional sand cement screed can offer significant improvements in heating response times.

Improvements in thermal conductivity over sand cement screeds increases the speed at which heat energy moves through a material, where Lafarge Tarmac’s Topflow Screed A has a thermal conductivity twice that of traditional sand cement screeds.

The flexural and compressive strength of anhydrite screeds allows a thinner layer of screed to be placed reducing cover to pipes compared to traditional sand cement screeds. This is illustrated in the diagrams on the next page.

The reduction in cover and increased thermal conductivity enables the system to respond quicker to the occupant requests and maintain thermal comfort.
The use of Agilia™ Screed A in place of a conventional sand cement screed underfloor heating solution can offer significant improvements in heating response times. The thermal conductivity of Agilia™ Screed A, 2.2 W/m²K, is two times more than that offered by conventional sand cement screeds. It is a material's thermal conductivity which determines the rate at which heat is conducted and is measured in W/m²K. The low operating temperature of an underfloor heating system is between 30-45°C, ideal for underfloor heating, and it is at the lower temperatures where they perform most efficiently. At these lower temperatures a COP of 3 is typically sought.

Underfloor heating systems offer the ability to not only reduce energy demands and improve heat supply efficiencies but also costs. The reduction in the heating demand of underfloor heating systems compared to radiators does not preclude the use of combustion boilers and heat pumps. Both air and ground source heat pumps are suitable for use as the single heat source for underfloor heating systems. Whilst it is not recommended that solar thermal heat sources be used as the heat source. Typical output temperatures range between 30-45°C, ideal for underfloor heating, and it is at the lower temperatures where they perform most efficiently. At these lower temperatures a COP of 3 is typically sought.

Solar thermal energy output is greater than the energy cost to run the system, which utilises a solar heat store as the interface. Solar thermal boilers and heat pumps can form part of a compatible system which utilises a solar heat store as the interface. Solar thermal boilers can be used as direct replacements for gas boilers, conventional, combination and condensing, boilers. Biomass boilers can be used as direct replacements for gas boilers, conventional, combination and condensing, boilers. Wood burning boilers can be used as direct replacements for gas boilers, conventional, combination and condensing, boilers. The reduction in the heating demand of underfloor heating systems is considered low or zero carbon, as it is only the carbon absorbed during its life which is released. It is sustainable.

Underfloor heating systems whilst not only operating at a lower temperature than a radiator system they are also able to maintain the same level of thermal comfort as the single heat source for underfloor heating systems. Whilst underfloor heating systems can also act as an efficient preheater, reducing energy demand and also have the capability to provide up to 50% or 60% of hot water needs. As a result of the COP which determines the rate at which heat is conducted and is measured in W/m²K. It is also possible to make creditable use of Agilia™ Screed A enables the system to respond quicker to the occupants requirements and maintain thermal comfort.

Additional emissions are produced only through transport which utilises a solar heat store as the interface. Solar thermal boilers and heat pumps can form part of a compatible system which utilises a solar heat store as the interface. Solar thermal boilers can be used as direct replacements for gas boilers, conventional, combination and condensing, boilers. Both air and ground source heat pumps are suitable for use as the single heat source for underfloor heating systems. Whilst it is not recommended that solar thermal heat sources be used as the heat source. Typical output temperatures range between 30-45°C, ideal for underfloor heating, and it is at the lower temperatures where they perform most efficiently. At these lower temperatures a COP of 3 is typically sought.

Solar thermal energy output is greater than the energy cost to run the system, which utilises a solar heat store as the interface. Solar thermal boilers and heat pumps can form part of a compatible system which utilises a solar heat store as the interface. Solar thermal boilers can be used as direct replacements for gas boilers, conventional, combination and condensing, boilers. Biomass boilers can be used as direct replacements for gas boilers, conventional, combination and condensing, boilers. Wood burning boilers can be used as direct replacements for gas boilers, conventional, combination and condensing, boilers. The reduction in the heating demand of underfloor heating systems is considered low or zero carbon, as it is only the carbon absorbed during its life which is released. It is sustainable.

Underfloor heating systems whilst not only operating at a lower temperature than a radiator system they are also able to maintain the same level of thermal comfort as the single heat source for underfloor heating systems. Whilst underfloor heating systems can also act as an efficient preheater, reducing energy demand and also have the capability to provide up to 50% or 60% of hot water needs. As a result of the COP which determines the rate at which heat is conducted and is measured in W/m²K. It is also possible to make creditable use of Agilia™ Screed A enables the system to respond quicker to the occupants requirements and maintain thermal comfort.

Additional emissions are produced only through transport which utilises a solar heat store as the interface. Solar thermal boilers and heat pumps can form part of a compatible system which utilises a solar heat store as the interface. Solar thermal boilers can be used as direct replacements for gas boilers, conventional, combination and condensing, boilers. Both air and ground source heat pumps are suitable for use as the single heat source for underfloor heating systems. Whilst it is not recommended that solar thermal heat sources be used as the heat source. Typical output temperatures range between 30-45°C, ideal for underfloor heating, and it is at the lower temperatures where they perform most efficiently. At these lower temperatures a COP of 3 is typically sought.

Solar thermal energy output is greater than the energy cost to run the system, which utilises a solar heat store as the interface. Solar thermal boilers and heat pumps can form part of a compatible system which utilises a solar heat store as the interface. Solar thermal boilers can be used as direct replacements for gas boilers, conventional, combination and condensing, boilers. Biomass boilers can be used as direct replacements for gas boilers, conventional, combination and condensing, boilers. Wood burning boilers can be used as direct replacements for gas boilers, conventional, combination and condensing, boilers. The reduction in the heating demand of underfloor heating systems is considered low or zero carbon, as it is only the carbon absorbed during its life which is released. It is sustainable.

Underfloor heating systems whilst not only operating at a lower temperature than a radiator system they are also able to maintain the same level of thermal comfort as the single heat source for underfloor heating systems. Whilst underfloor heating systems can also act as an efficient preheater, reducing energy demand and also have the capability to provide up to 50% or 60% of hot water needs. As a result of the COP which determines the rate at which heat is conducted and is measured in W/m²K. It is also possible to make creditable use of Agilia™ Screed A enables the system to respond quicker to the occupants requirements and maintain thermal comfort.
INCREASED THERMAL COMFORT

Thermal comfort is defined as the ‘condition of mind which expresses satisfaction with the thermal environment’\(^1\) or in simpler terms whether someone is feeling neither too hot nor too cold. It is a balance between the conditions of the inhabited room and the heat losses of its occupants.

An ideal heating curve for thermal comfort has been described in many industry publications, it is based upon the ideal temperature of the human body at different heights, as a factor of the heat losses experienced across the human body (illustrated on the next page)\(^†\). Comfort is influenced by air temperature and the radiant temperatures of objects within a room along with the walls, floor and ceiling\(^24\).

When compared to radiators, underfloor heating provides a heating curve that is more closely aligned to the ideal heating curve than that of radiator based systems. This is due to the floor acting effectively as a large radiator, radiating the heat directly to occupants, whereas a traditional radiator system heats primarily via convection\(^10\).

Underfloor heating can avoid issues of draughts and cold spots that can occur through radiator heating and it is also possible to attain the same level of thermal comfort at a lower temperature\(^25\).
The homogeneity of sand cement screeds are dependent on thermal conductivity and the systems ability to respond to pipes, improving heat energy transmission, complimenting facilitated the complete envelopment of underfloor heating and ceiling.

Thermal comfort is defined as the 'condition of mind which expresses satisfaction with the thermal environment' or in simpler terms whether someone is feeling neither too hot nor too cold. It is a balance between the conditions of the inhabited room and the heat losses of its occupants. An ideal heating curve for thermal comfort has been described in many industry publications, it is based upon the ideal temperature curve that is more closely aligned to the ideal heating curve than that of radiator based systems. This is due to the issues of draughts and cold spots that can occur due to a radiators heating method and it is also possible to attain the same level of thermal comfort at a lower temperature when compared to radiators.

When compared to radiators, underfloor heating provides a reduction in energy input. Where full compaction is achieved this will facilitate the complete envelopment of underfloor heating and ceiling.

The homogeneity of sand cement screeds are dependent on recycled content of 36%. Embodied energy can be significantly reduced when compared to sand/cement. The binder has previously sent to landfill. Embodied energy can be significantly reduced when compared to sand/cement. The primary active component, Calcium Sulphate (CaSO), is a by product of Hydrofluoric Acid production, which would be already been produced and the minimal further processing does not require the high energy associated with cement production.

Recycled content of 98%, with the resultant screed maintaining a total recycled content of 98%. With the high recycled content of Agilia Screed A employing a high percentage of recycled material, the binder has a by product of Hydrofluoric Acid production, which would be already been produced and the minimal further processing does not require the high energy associated with cement production.

Underfloor heating can avoid directly to occupants, where as a traditional radiator system floor acting effectively as a large radiator, radiating the heat curve than that of radiator based systems. This is due to the heating curve that is more closely aligned to the ideal heating curve than that of radiator based systems. This is due to the heating curve that is more closely aligned to the ideal heating curve than that of radiator based systems. This is due to the heating curve that is more closely aligned to the ideal heating curve than that of radiator based systems. This is due to the heating curve that is more closely aligned to the ideal heating curve than that of radiator based systems. This is due to the heating curve that is more closely aligned to the ideal heating curve than that of radiator based systems. This is due to the heating curve that is more closely aligned to the ideal heating curve than that of radiator based systems. This is due to the heating curve that is more closely aligned to the ideal heating curve than that of radiator based systems.

-Radiation and conduction occur in the floor until the temperature is reached which is similar to the heating curve required by the occupants requirements.

-A temperature is chosen and this can be maintained by the underfloor heating system and will provide the same level of comfort at lower temperature.

-Viega and Uponor.

Adapted from The Portland Cement Association, Viega and Uponor.

Adapted from The Portland Cement Association, Viega and Uponor.

Adapted from The Portland Cement Association, Viega and Uponor.
HIGH RECYCLED CONTENT

The primary active component of Topflow Screed A, calcium sulphate (CaSO4), is a by-product of hydrofluoric acid production which was previously sent to land landfill.

Utilisation of this waste enables significant reductions in embodied energy to be made as the binder has already been produced requiring minimal further processing and avoiding the high energy processes associated with cement production. Topflow Screed A has a final recycled content of 36% with the binder itself being 98% recycled26,27.

IMPROVED INSULATION CHOICE

Within underfloor heating systems screed thickness can be reduced by employing an anhydrite screed in place of a traditional screed. Where predetermined formation levels are maintained changes can be made to deliver improved performance or reduced cost by balancing insulation performance and layer thickness.

Opportunities for cost savings can be made through using a thicker layer of more inexpensive lower performing insulation or improving performance by using more of existing insulation.

The table opposite details the relationship between desired U value, insulation type and insulation depth, which can be used to demonstrate the aforementioned approach.
Comparison of insulation depth and insulation type to achieve a U value of 0.18 W/m²

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>THERMAL CONDUCTIVITY (W/mK)</th>
<th>STRENGTH (KPA)</th>
<th>INSULATION DEPTH (MM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPS 100</td>
<td>0.035</td>
<td>100</td>
<td>165 160 160 155 155 150 140 125 100</td>
</tr>
<tr>
<td>EPS PLATINUM</td>
<td>0.030</td>
<td>100</td>
<td>140 140 140 135 130 125 120 105 85</td>
</tr>
<tr>
<td>XPS</td>
<td>0.029</td>
<td>200</td>
<td>135 135 135 130 125 120 115 100 80</td>
</tr>
<tr>
<td>POLYURETHANE WITH FOIL</td>
<td>0.023</td>
<td>130</td>
<td>110 110 105 105 100 100 90 85 65</td>
</tr>
<tr>
<td>PHILONIC POLYURETHANE WITH FOIL</td>
<td>0.021</td>
<td>140</td>
<td>100 100 95 95 95 90 85 75 60</td>
</tr>
</tbody>
</table>

P/A RATIO

<table>
<thead>
<tr>
<th>P/A RATIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
</tr>
<tr>
<td>0.90</td>
</tr>
<tr>
<td>0.80</td>
</tr>
<tr>
<td>0.70</td>
</tr>
<tr>
<td>0.60</td>
</tr>
<tr>
<td>0.50</td>
</tr>
<tr>
<td>0.40</td>
</tr>
<tr>
<td>0.30</td>
</tr>
<tr>
<td>0.20</td>
</tr>
</tbody>
</table>

* The P/A ratio is the ratio between slab perimeter (m) and the area (m²) of slab enclosed by this perimeter.
FAST TRACKING OF CONSTRUCTION

Self-compacting screeds can significantly improve construction speeds as they employ a simplified placement methodology, can be delivered on demand and without the requirement for onsite mixing or space for storage.

The flowing nature of self-compacting screeds mean that they require less manual manipulation in placement, with time and labour intensive activities of screeding and tamping with a traditional screed avoided.

These properties enable a fivefold increase in area that can be placed when composed to a traditional screed enabling 1,000m² to be placed rather than 100-150m² per day.

Underfloor heating in anhydrite screeds can be commissioned after 7 days enabling the screed to be force dried, sand cement screeds can only be commissioned after 21 days.

Early commissioning enables final finishes to be applied sooner as desired moisture contents can be achieved earlier.
Simplified and less demanding placement of Topflow Screed A

Intensive placement operation of sand/cement screed installation
The installation of underfloor heating systems with self-compacting screeds requires adherence to a number of procedures, governing pre-construction, construction and post pour activities to ensure the quality of the finished floor.

<table>
<thead>
<tr>
<th>PRE-PLANNING AND INSTALLATION CONSIDERATIONS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Underfloor heating</td>
<td>When an underfloor heating system is installed quality checks are required to be carried out prior to the undertaking of the screeding operation. British Standards require a pressure test to be undertaken prior to the placement of screed to ensure that there are no leaks within the system which could cause failure and future issues. Checks should be made to ensure that pipes are sufficiently secured to avoid floating during installation and that a minimum cover of 30mm (to top of pipe) is achieved.</td>
</tr>
<tr>
<td>Bay size and layout</td>
<td>Unlike cementious screeds, calcium sulphate screeds are not subject to excessive shrinkage and expansion. It is therefore possible to redefine the requirements for bay sizes and jointing. Bay sizes can extend up to 1,000m², with a maximum bay dimension of 40m and an aspect ratio not exceeding 6:1. Where underfloor heating systems are employed bay sizes must be reduced to 300m² and joints created between heating circuits to allow for temperature, shrinkage and expansion differentials.</td>
</tr>
</tbody>
</table>
Installation of resilient floor coverings can only be completed once a sufficient moisture content is reached in underlying screeds, which dictates the continuation of construction works. A calcium sulphate screed, in ideal drying conditions (defined in BS 8204 35), like a sand cement screed, can indicative achieve a drying rate of 1mm per day up to a depth of 40mm, followed by a rate of 0.5mm per day. Calcium sulphate screeds offer a reduced drying time due to reductions in screed depth enabling follow on trades to commence sooner. This is illustrated in the table on p25.

Drying times can be further reduced by improving the drying environment, through the use of dehumidifiers and/or space heaters or through force drying by commissioning the underfloor heating system (guidance for forced drying should be sought from product manufacturer). Prior to the application of subsequent finishes it is necessary for the moisture content of the floor to be established and according to British Standards this should be no higher than a relative humidity of 75% 35.

Cementitious based adhesives should be avoided when using calcium sulphate screeds due to the potential for deleterious chemical reactions. This issue can be addressed through the use of suitable surface primers which stop material interaction and moisture transmission can be used or specially formulated calcium sulphate adhesives should be used (adhesive producers guidelines should be followed at all times).

<table>
<thead>
<tr>
<th>SCREED</th>
<th>DEPTH (MM)</th>
<th>DEPTH AT 1MM PER DAY DRYING RATE (MM)</th>
<th>REMAINING DEPTH AT 0.5MM PER DAY DRYING RATE (MM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAND AND CEMENT</td>
<td>75</td>
<td>50</td>
<td>25</td>
</tr>
<tr>
<td>TOPFLOW SCREED A</td>
<td>50</td>
<td>40</td>
<td>10</td>
</tr>
</tbody>
</table>

Comparison of drying time durations of sand cement and calcium sulphate screeds
An environmental study has been undertaken in order to compare the environmental credentials of underfloor heating solutions. The study has compared Topflow Screed A and a traditional sand cement screed, along with an alternative radiator based solution.

The solutions compared have been designed to satisfy the same structural performance principles and the differences between each system are a result of the inherent properties of each system. The scope of analysis has been limited to production and installation, assessed over a functional 1m² area, based upon the principles of ISO 1404036 and ISO 1404437. The assessment has considered a number of environmental measures, which explore the wider effects of the systems and exceed the simple measurement of CO\textsubscript{2} production.
Air acidification: SO\(_2\) vegetation on low levels. This can have a damaging effect on humans at high concentration levels but also CO which can create low level ozone.

System A
Tiled finish with Topflow Screed A (50mm) with underfloor heating and insulation.

System B
Tiled finish with sand cement screed (75mm) with underfloor heating and insulation.

System C
Tiled finish with sand cement screed (75mm) with radiator heating and insulation.

COMPARISON OF THE ENVIRONMENTAL FOOTPRINTS

GREENHOUSE EFFECT

<table>
<thead>
<tr>
<th>System</th>
<th>Primary Energy</th>
<th>Embodied Energy</th>
<th>Embedded Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>0.5</td>
<td>0.5</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

DEPLETION OF ABIOTIC RESOURCES

<table>
<thead>
<tr>
<th>System</th>
<th>Depletion of Abiotic Resources</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>11</td>
</tr>
<tr>
<td>B</td>
<td>11</td>
</tr>
<tr>
<td>C</td>
<td>11</td>
</tr>
</tbody>
</table>

Embodied energy describes energy that is found in nature that has not been subject to a transformation or conversion process, whereas **embodied energy** describes energy that requires little or no processing.

AIR ACIDIFICATION AND OZONE FORMATION

As with CO\(_2\) emissions a similar trend is also present in primary and embodied energy, primarily due to the utilisation of a calcium sulphate binder, once again reduced due to utilisation of a waste product material quantity.

Underfloor heating systems using Agilia™ Screed A are well suited for comparison as it is the use of resources that are the next generation of materials. As such it comes from non-living and non-organic materials.

Underfloor heating systems using Agilia™ Screed A are well suited for comparison as it is the use of resources that are the next generation of materials. As such it comes from non-living and non-organic materials.

The assessment has considered a number of environmental impacts upon the principles of ISO 1404023 and ISO 1404424. The scope of analysis has been limited to production and installation, assessed over a functional 1m\(^2\) area, based on the system.

Improvements through the use of Agilia™ Screed A are an additional detrimental effect on soil and vegetation.
Total primary energy

Photochemical ozone formation

Embedded energy

Depletion of abiotic resources

Air acidification

Water consumption

Greenhouse effect

Production of waste

Topflow Screed A

Cement screed with underfloor heating

Cement screed with heating by radiators
Photochemical ozone formation: is caused by NO\textsubscript{x}, VOC and CO which can create low level ozone, this can have a damaging effect on humans at high concentration levels but also on vegetation at low levels.

Air acidification: SO\textsubscript{2} and NO\textsubscript{x} are key causes of acidification. When expelled into the atmosphere they can damage and accelerate damage to buildings with an additional detrimental effect on soil and vegetation.

Primary energy: describes energy that is found in nature that has not been subject to a transformation or conversion process.

Embodied energy: is the energy required to create and produce the system.

Depletion of abiotic resources: is the use of resources that come from non-living and non-organic materials.
RECYCLING

The concrete industry has taken significant steps to improve its performance in terms of material reuse, reducing the depletion of abiotic resources, increasing energy efficiency and reducing carbon emissions. Significant improvements have already been achieved compared to the industry’s 1990 baseline38.

With respect to material reuse and the depletion of abiotic resources, concrete readily utilises recycled and secondary materials along with cement replacements. This has enabled the industry to be a net user of waste, using 47 times more waste than it generates38, and concrete itself is also 100\% recyclable39.

BES 6001*

Lafarge Tarmac has achieved a ‘Very Good’ rating for all its production sites and products. The independent third-party scheme assesses responsible sourcing polices and practices throughout the supply chain40.

ISO 14001

Lafarge Tarmac are fully accredited with ISO 14001, having implemented Environmental Management Systems throughout our business, maintaining our commitment to reducing our environmental impact41.
SUSTAINABILITY ASSESSMENT SCHEMES

Concrete can play an extended role in enabling an efficient building to be created and can contribute in a number of assessment schemes and help achieve a range of credits\(^1\).

<table>
<thead>
<tr>
<th>CREDIT/TARGET</th>
<th>BREEAM</th>
<th>LEED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Man 03: Responsible Construction Practices</td>
<td>Lafarge Tarmac’s Carbon Calculator has the capability to determine and provide data relating to the CO(_2) arising from the delivery transport.</td>
<td>EA Credit 1: Optimize Energy Performance</td>
</tr>
<tr>
<td>Hea 04: Thermal Comfort</td>
<td>Underfloor heating systems and the radiant heat transfer provides an effective basis for heating and cooling strategies. Systems can be easily zoned to match varying demands within a building.</td>
<td>MR Credit 4: Recycled content</td>
</tr>
<tr>
<td>Ene 01: Reduction of energy use and carbon emissions</td>
<td>This system can reduce energy demands by lower operating temperatures and can facilitate the utilisation of renewable energy sources.</td>
<td>MR Credit 4: Regional materials</td>
</tr>
<tr>
<td>Mat 03: Responsible sourcing of materials</td>
<td>Ready-mixed products are primarily constituted of locally available materials. All ready-mixed products produced by Lafarge Tarmac are BES 6001 accredited.</td>
<td>IEQ Credit 6.2: Controllability of Systems - Thermal Comfort</td>
</tr>
<tr>
<td>Wst 02: Recycled aggregates</td>
<td>Calcium sulphate screeds make use of an industry waste product, resulting in a minimum recycled content of 36%.</td>
<td></td>
</tr>
</tbody>
</table>

\(^1\) Lafarge Tarmac concrete products offer the ability to conform with a wide-ranging number of assessment criteria in both BREEAM and LEED. For more information contact Lafarge Tarmac sustainability team.

* Our BES 6001 certificate number for our readymix concrete products is BES 559207.
Using this ‘whole life’ thinking we have engaged with our stakeholders to develop our sustainability strategy. The strategy defines the main sustainability themes and our key priorities, those issues which are most important to our business and our stakeholders. It sets out our commitments to transform our business under four main themes: People, Planet, Performance and Solutions.

Building on progress already made, we have set ambitious 2020 milestone targets for each of our key priorities. These ambitious targets have been set to take us beyond incremental improvement programmes to business transforming solutions. Our 2020 milestones are supported by a range of other performance targets. This hierarchy helps make it easier to build understanding, drive improvement and enables us to report progress in a meaningful and measurable way.

Sustainability is about securing long-term success for our business, customers and communities by improving the environmental, social and economic performance of our products and solutions through their life-cycle. This means considering not only the goods we purchase, our operations and logistics but also the performance of our products in use and their reuse and recycling at the end of their life. By doing this, we can understand and take action to minimise any negative aspects, while maximising the many positive sustainability benefits our business and products bring.
Using this ‘whole life’ thinking we have engaged with our stakeholders to develop our sustainability strategy. The strategy defines the main sustainability themes and our key priorities, those issues which are most important to our business and our stakeholders. It sets out our commitments to transform our business under four main themes: **People, Planet, Performance and Solutions**.

Building on progress already made, we have set ambitious 2020 milestone targets for each of our key priorities. These ambitious targets have been set to take us beyond incremental improvement programmes to business transforming solutions. Our 2020 milestones are supported by a range of other performance targets.

This hierarchy helps make it easier to build understanding, drive improvement and enables us to report progress in a meaningful and measurable way.

OUR SUSTAINABILITY STRATEGY

Sustainability is about securing long-term success for our business, customers and communities by improving the environmental, social and economic performance of our products and solutions through their life-cycle. This means considering not only the goods we purchase, our operations and logistics but also the performance of our products in use and their reuse and recycling at the end of their life. By doing this, we can understand and take action to minimise any negative aspects, while maximising the many positive sustainability benefits our business and products bring.

FOUR THEMES

- Twelve key priorities
- Twelve commitments
- Twelve 2020 milestones
- Forty four other performance targets
REFERENCES

1. Health and Safety Executive – Thermal Comfort
www.hse.gov.uk/temperature/thermal/index.htm

2. US Department of Energy – Radiant Cooling
www.energy.gov/energysaver/articles/radiant-cooling

3. US Department of Energy – Heating & Cooling
http://energy.gov/public-services/homes/heating-cooling

www.energysavingtrust.org.uk

5. RIBA Sustainability Hub, U values
www.architecture.com/SustainabilityHub/Designstrategies/Earth

6. The BPF Expanded Polystyrene Group
www.eps.co.uk/abouteps/attributes.html

7. European Extruded Polystyrene Board Insulation Association
www.exiba.org/what_is_XPS.asp

10. GreenSpec® - Refurbishment / Retrofit: Radiators and Underfloor Heating
www.greenspec.co.uk/radiators-underfloor-heating.php

11. Underfloor Heating Manufacturers Association - Underfloor Heating
www.beama.org.uk/en/energy/underfloor-heating/

12. The Energy Saving Trust – Choosing a renewable technology
www.energysavingtrust.org.uk/Generating-energy/Choosing-a-renewable-technology

http://energy.gov/energysaver/articles/radiant-heating
14. The Energy Saving Trust – Wood fuelled heating
 www.energysavingtrust.org.uk/Generating-energy/Choosing-a-renewable-technology/Wood-fuelled-heating

15. Which? – Ground source heat pumps explained
 www.which.co.uk/energy/creating-an-energy-saving-home/guides/ground-source-heat-pumps-explained/

16. Which? – Air source heat pumps explained –
 www.which.co.uk/energy/creating-an-energy-saving-home/guides/air-source-heat-pumps-explained/

17. GreenSpec® - Ground Source Heat Pumps (GSHP)
 www.greenspec.co.uk/ground-source-heat-pumps.php

18. The Energy Saving Trust – Air Source Heat Pumps
 www.energysavingtrust.org.uk/Generating-energy/Choosing-a-renewable-technology/Air-source-heat-pumps

19. The Energy Saving Trust – Ground Source Heat Pumps
 www.energysavingtrust.org.uk/Generating-energy/Choosing-a-renewable-technology/Ground-source-heatpumps

20. Good Energy – Solar Thermal Site Selection
 www.goodenergy.co.uk/generate/choosing-your-technology/home-generation/solar-thermal/solar-thermal-site-selection

21. GreenSpec® - Solar Hot Water Collectors
 www.greenspec.co.uk/solar-collectors.php

 Casting of Self Compacting Concrete: Final report of RILEM Technical Committee 188-CSC: Casting of Self Compacting Concrete, RILEM REPORT 35, RILEM Publications Bagneux, France

24. Health and Safety Executive – Thermal Comfort: The six basic factors
 www.hse.gov.uk/temperature/thermal/factors.htm

25. GreenerHeat – Underfloor Heating
 www.greenerheat.co.uk/renewable-heating/underfloor-heating/frequently-asked-questions

26. Gyvlon – Environmental Statement
 www.gyvlon.co.uk/page8.html

27. Lafarge Tarmac Topflow Screed A
 www.lafargetarmac.com/#readymix

28. Portland Cement Association, Concrete Technology Today: Radiant Heat With Concrete, Volume 18, Number 1, 1997

 www.viega.net/cps/rde/xbr/en-us/Viega_Concrete_Systems.pdf

This catalogue is provided for information purposes only. Lafarge Tarmac expressly disclaims all warranties of any kind, whether express or implied, as to the accuracy, reliability and validity of the content and accepts no liability for any loss or other commercial damages incurred as a result of using and relying on the information provided. There is no partnership between Lafarge Tarmac and the companies mentioned in this catalogue. All products and intellectual property rights of these companies are only used for identification and information purposes and remain, at all times, the exclusive property of their respective owners.